Skip to main content

Condition & Impairment Assessment

Background

Synopsis of Topic

There are many ways to define restoration and the related management actions we take to improve things. Regardless of the definition you subscribe to, implicit in taking such restoration actions is the idea that current conditions are worse than either they were previously, or worse than they could be. Condition can be described with simple qualitative categories (e.g. poor, moderate, good intact), descriptive categories (e.g. functioning properly, functioning at risk, impaired function; see 'watershed condition' inf figure below), or with some sort of continuous score (e.g. 0 to 100% departure from historic). Thus, most restoration actions are focused on improving current conditions towards something better. We will discuss developing appropriate targets for condition and analogues when we get into recovery potential in week 3.

WatershedCondition Map from USFS's National Inventory of 6th Level (HUC12) Watershed Condition (from Potyondy et al. (2011)).

However, it is critically important to be clear what we mean by condition. What geography is considered? Is it watershed condition (e.g. Potyondy et al. (2011); i.e. a polygon region), reach condition (e.g. Fryirs (2015) - geomorphic condition; and Brierley & Fryirs (2005)), or some other geography? Similarly, what type of condition are we talking about? Is this the condition of a particular population of species of concern (e.g. fish~ McHugh et al 2017; Wheaton et al. 2017) or that species habitat condition (e.g. beaver habitat - Macfarlane et al 2015)? Is this some integrated measure of ecosystem condition or multiple species that are indicative of such condition (e.g. biotic integrity censu Hawkins et al. 2000)? Are we concerned with riparian conditions (e.g. Macfarlane et al. 2016) or wetland conditions or floodplain condition? There are many lenses by which we can consider condition, and its important to be clear what specific aspect of condition we are considering. Moreover, different types of condition assessment can focus on specific impairments that might help give clues about what restoration actions might need to focus on.

Why we're covering it

Although it is possible to just jump into restoration actions without a clear evaluation of condition or articulation of specifically what impairments are a problem, it is a far better to use condition assessment to more clearly define the problem. Depending on the methods of condition assessment used, the underlying scores and intermediate outputs of such a process may more helpfully identify what specific impairments need attention.

Learning Outcomes

Of the course learning outcomes, we are primarily focused this week on:

  1. Identify and document specific watershed or ecosystem impairments in relationship to pre-defined management objectives.

Secondarily, we will build towards:

  1. Build a working understanding of the typical process through which restoration projects are conceived, proposed, planned, permitted and conceptually designed.

Resources

Workshop Slides & Handouts

2019

2019 WATS5340 Week 05 In the fifth week we moved into considering condition assessment through the lens of the Conservation Planning Process.

2018

Background & Definitions:

Examples:

Datasets for Cache Valley

2017

Tools we Used

In class we used both BRAT & RCAT as examples to conceptualize the idea of recovery potential.

BRAT

Beaver Restoration Assessment Tool

RCAT

Riparian Condition Assessment Tool

Relevant or Cited Literature

  • Macfarlane WW, Wheaton JM, Bouwes N, Jensen ML, Gilbert JT, Hough-Snee N and Shivik JA. 2015. Modeling the capacity of riverscapes to support beaver dams. Geomorphology. DOI: 10.1016/j.geomorph.2015.11.019. - See also BRAT.
  • McHugh PA, Saunders WC, Bouwes N, Wall CE, Bangen S, Wheaton JM, Nahorniak M, Ruzycki JR, Tattam IA and Jordan CE. 2017. Linking models across scales to assess the viability and restoration potential of a threatened population of steelhead ( Oncorhynchus mykiss ) in the Middle Fork John Day River, Oregon, USA. Ecological Modelling. 355: 24-38. DOI: 10.1016/j.ecolmodel.2017.03.022.
  • Pess GR, Beechie TJ, Williams JE, Whital DR, Lange JI and Klochak JR. 2003. 8. Watershed Assessment Techniques and the Success of Aquatic Restoration Activities. in Wissmar RC, Bisson PA and Duke M (Eds), Strategies for Restoring River Ecosystems: Sources of Variability and Uncertainty in Natural and Managed Systems. American Fisheries Society: Bethesda, Maryland, pp. 185-201.
  • Potyondy J, Geier T, Luehring P, Hudy M, Roper B, Dunlap R, Doane T, Kujawa G, Anderson PT, Hall-Rivera J, Keys J, Ielmini M, Acheson A, Thompson R, Davis B, Friedman S, Rosa KD and Brown T. 2011. Watershed Condition Framework. FS-9777, United States Department of Agriculture Forest Service, 34 pp. - See USFS Watershed Condition Framework Website too.
  • Shahverdian S, Macfarlane WW and Wheaton JM. 2016. MEMO: Westerly Creek Beaver Dam Capacity Assessment: Developing Realistic Expectations for Beaver Dam Activity. Prepared for Muller Engineering Company, Anabranch Solutions, Logan, UT, 24 pp. DOI: 10.13140/RG.2.2.34120.93446
  • Wheaton J, Bouwes N, McHugh P, Saunders WC, Bangen SG, Bailey PE, Nahorniak M, Wall CE and Jordan C. 2017. Upscaling Site-Scale Ecohydraulic Models to Inform Salmonid Population-Level Life Cycle Modelling and Restoration Actions – Lessons from the Columbia River Basin. Earth Surface Processes and Landforms. DOI: 10.1002/esp.4137.